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Abstract

Hidden Markov Models (HMMs) are widely used for discrete time series and
unsupervised learning. The Baum-Welch has long since been the widely used
algorithm to estimate the underlying HMM of an observed sequence. Recent re-
search has shown that spectral methods are applicable to estimating the HMM
efficiently. In this paper, we consider using the entropy of solution sequences to
a given observed sequence as a measure of estimator efficiency. We survey meth-
ods of estimating and calculating entropy assuming HMMs. We then examine
empirical results on their effectiveness.

1 Introduction

Hidden Markov Models (HMMs) are widely used for discrete time series and unsupervised learning.
They are commonly used for text and speech recognition, genome modeling, and image processing.
The predominant heuristic for estimating an HMM is the Baum-Welch algorithm, which uses an
iterative EM algorithm to find local maxima [2]. More recently, efficient spectral learning algorithms
have been proposed for learning HMMs.

Showing the effectiveness of algorithms has been a hard problem. For instance, research has shown
that the HMM learning problem is not PAC-learnable in polynomial time [8]. Despite this, recent
research has continued work on finding global bounds for risk, consistency, and entropy rates by
placing reasonable assumptions on the data set, assumed model, or the algorithm used.

In this paper, we explore the use of entropy as a method of evaluating the effectiveness of an HMM
learning algorithm. Entropy is a measure of the uncertainty of a random variable and mutual in-
formation is a measure of the divergence between two random variables [3]. We will calculate the
entropy of the possible state sequence solutions for a given algorithm. Since we consider all the
paths through the HMM states, we get an evaluation of the estimated HMM as a whole. To achieve
this goal, we first survey the two primary methods of estimating an HMM. We then show an efficient
method of calculating the entropy of state sequences for a given observation sequence in 3.2. As a
brief aside, we show that the entropy can be computed efficiently during the Baum-Welch algorithm
in 3.3. We finish off by comparing the entropy of the two algorithms in terms of the length of an
observed sequence, the number of states, and number of observation symbols.

2 Hidden Markov Models

In this paper, we consider a hidden markov model to be a discrete-time homogenous Markov chain
observed through a discrete-time memoryless invariate channel, such as that defined by [4], and
specifically consider the case where there are finite states and observation symbols. Formally, a
hidden Markov model is a 5-tuple (S, V,A,B, π) where

• S = S1, . . . , SN a set ofN hidden states, which often represent physical aspects of a model
such as coins in a model with coin tosses or word occurrence in a text model, where the
state at time t is represented by qt,
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• V = v1, . . . , vM the set of M observable symbols, such as heads or tails or a block of bits
representing words,
• A = aij an N × N state probability transition matrix with transition probabilities aij =
P (qt = Si|qt−1 = Sj)∀i, j ∈ 1, . . . , N ,
• B = bj(k) distributions over the observed symbols where bj(k) = P (vk|qt = Sj), and
• π = πi the initial state probability distribution where the probability of each state is πi =
P (q1 = Si).

We will assume S and V are known and use the simpler notation, λ = (A,B, π), suggested by
Rabiner [7].

3 Estimating entropy of an HMM

In this work, we are concerned with HMM where the states of the markov chain are unknown. Our
interest is to estimate the entropy of the solution state sequence that correspond to a sequence of
observed values assuming they are drawn according to an HMM. To estimate the entropy under
HMM assumptions, we will first estimate the number of states, known as the order of the HMM,
followed by estimating the parameter states, and then calculating the entropy for the HMM. For
the initial estimation, we will use the well-known Baum-Welch algorithm to estimate the states and
observable probability densities.

3.1 Estimating Parameters of the HMM

We will compare two algorithms performance in estimating the parameters. The first is the widely
used Baum-Welch algorithm, as described by Rabiner, which is essentially an EM algorithm [7].
The second, recently discovered, algorithm is a variant on the spectral method, as described by Hsu
et al [6].

3.1.1 The Baum-Welch Algorithm

The algorithm is a simple iterative expectation-maximization heuristic that utilizes a forward-
backward procedure to calculate the variables necessary to use Bayes theorem to maximize the
expected transitions and expected probability of seeing an observation.

At each iteration, we will need to estimate a new HMM from the existing one. We first calculate two
variables: a forward variable representing the probability of seeing a sequence of states until time t
and the current observed symbol

αt(i) = P (O1O2 . . . Ot, qt = Si|λ)

= bi(Ot)

N∑
j=1

αt(j)aji,

where the last formula is calculated from the HMM from the previous iteration and α1(i) =
πibi(O1), and a backward variable representing the probability of seeing a sequence of states af-
ter time t and the current observed symbol

βt(i) = P (OtOt+1 . . . OT |qt = Si, λ)

=

N∑
j=1

βt+1(j)bj(Ot)

where βT = 1. Given these definitions, we can calculate the update variables needed for the update
step of the iteration. We need two variables: ξt(i, j), the probability of of transitioning from state
Si at time t to state Sj ,

ξt(i, j) =
P (qt = Si, qt+1 = Sj , O|λ)

P (O|λ)

=
αt(i)aijβt+1(j)∑N

i=1

∑N
j=1 αt(i)aijβt+1(j)
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and the probability of being in state Si at time t is just γt(i) =
∑N

j=1 ξt(i, j). Given these, we can
now run the update step to create λ̄:

π̄i = γi

āij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

b̄j(k) =

∑T
t=1,Ot=vk

γt(j)∑T
t=1 γt(j)

We then repeat until λ = λ̄, repeating with λ̄ otherwise.

3.1.2 Spectral Method for Learning an HMM

In the spectral method, we parameterize a model by b̂1, b̂∞, and B̂x∀x ∈ [T ], with a T -sized sample.
As defined by Hsu et al., the algorithm has three steps:

1. Create empirical estimates P̂1, P̂2,1, P̂3,x,1∀x ∈ [T ], where P1 is the probability of a single
observation, P2,1 is the joint probability of seeing two observations in sequence, and P3,x,1

is the probability of seeing three observations in sequence with the second being x.

2. Compute Û , the left singular vectors corresponding to the m largest singular values of the
singular value decomposition of P̂2,1.

3. Compute the model parameters:

b̂1 = ÛT P̂1

b̂1 = (P̂2,1Û)+P̂1

b̂x = ÛT P̂3,x,1(ÛT P̂2,1)+P̂1

From his paper, he shows that we can retrieve the observation matrix by calculating the eigenvalues
of (UTP3,x,1)(UTP3, 1)+, which correspond to the observation probabilities Or,1, . . . , Or,m for
observation r. We retrieve O from the diagonal of the above observation probabilities. We can then
get the initial transition matrix π̂ = O+P1 and transition matrix T = O+P2,1(O+)T diag(π̂)−1.
Thus, we obtain the HMM parameters from the spectral method.

3.2 Calculating the Entropy of an HMM

Hernando et al. have constructed an efficient algorithm to compute the entropy of the state param-
eters given a complete HMM for a specific sequence of observations [5]. This algorithm uses a
dynamic programming approach similar to the Viterbi algorithm for finding the most probabilistic
path of an HMM.

Let qt = q1, q2, . . . , qt be the sequence of states up to the tth time state, Ot = O1, O2, . . . , Ot be
the sequence of observed values up to the tth time state, ct(j) = P (qt = Sj |Ot, λ), and Ht(j) =
H(St−1|St = j,Ot = ot). Hernando et al. have shown that the following recursive algorithm finds
the entropy in O(N2T ) time:

1. Initialization, ∀1 ≤ j ≤ N :

H1(j) = 0

c1(j) =
π(j)bj(O1)∑N
i=1 π(i)bi(O1)
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2. Recursive step, ∀1 ≤ j ≤ N , ∀2 ≤ t ≤ T :

ct(j) =

∑N
i=1 ct−1aijbj(Ot)∑N

k=1

∑N
i=1 ct−1aikbj(Ot)

P (qt−1 = Si|qt = Sj , O
t) =

aijct−1i∑N
k=1 aikct−1i

Ht(j) =

N∑
i=1

(i)P (St−1 = i|qt = Sj , O
t)

−
N∑
i=1

[P (qt−1 = Si|qt = Sj , O
t) · logP (qt−1 = Si|qt = Sj , O

t)]

3. Termination:

H(qT |OT ) =

N∑
i=1

HT (i)cT (i)

−
N∑
i=1

cT (i) log cT (i)

3.3 Efficiently calculating entropy during the Baum-Welch algorithm

Notice from the above calculations that ct(j) is the probability of the tth state being Sj , which is
γt(j) from the Baum-Welch algorithm. Thus, we can apply the above calculation of entropy by first
calculating the probability of the t− 1th step being in state Sj using ξt(i, j) and γt+1(j):

P (qt−1 = Si|qt = Sj , O
t) =

xit(i, j)

γt+1(j)

So, to calculate the entropy given the observation sequence during each iteration, we need only add
an O(NT ) steps to calculate the entropy:

Ht(j) =

N∑
i=1

(i)
ξt(i, j)

γt+1(j)

−
N∑
i=1

[
ξt(i, j)

γt+1(j)
· log

ξt(i, j)

γt+1(j)
]

3.4 Empirical Results of Absolute Risk of the Entropy

Here, we show empirical results of the two methods of creating HMMs. We consider the risk of the
absolute loss function of the entropy of the solution states between a given actual hidden markov
model and the estimated markov model. We make a few simplifications in this procedure:

• The generating HMM has uniformly random transitions between states and uniformly ran-
dom multinomial observation parameters.

• The number of states is known to the estimators.

• The sequence length is substantially larger than the number of states or observed symbols.

• The Baum-Welch algorithm gives up after a reasonable, finite number of steps. In this case,
fifty.

We used the following procedure for retrieving the average estimated entropy:
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(a) Variation over observation sequence length (b) Variation over observation symbol length

Figure 1: Empirical entropy estimation risk

1. Select an HMM HMMtrue at random.

2. Create a sequence s from HMMtrue.

3. Create a random guess for the HMM Hguess.

4. Feed Hguess into the Baum-Welch algorithm to retrieve HMMBM .

5. Create length(s)− 2 triples from s, striple.

6. Feed striple into the spectral algorithm to retrieve HMMspec.

7. Retrieve the entropy Htrue, HBM , andHspec from each of the HMMs.

8. Calculate the absolute difference.

We then iterate over different values of each of the length of an observed sequence, number of states
in the HMM, and number of observed symbols in the HMM, keeping the others fixed.

Notice in both 1a and 1b that the Baum-Welch algorithm risk is logarithmic in the size of the param-
eter. However, In both cases, the spectral method produces a risk that is approximately linear in the
parameters, while initially having lower risk. Thus, despite the fact that the Baum-Welch algorithm
is known to find local maxima, it achieves a lower bound in the long term, empirically. However,
Baum-Welch is computationally more complex than the spectral method and quickly increases in
computation time in the number of states. So, while the spectral method has a moderate risk, it gains
in time complexity.

4 Future Work

The results of this paper show the effectiveness of estimators with empirical results. In their paper,
Hsu et al. show a global bound on the absolute risk of sequences of observed symbols using the
spectral algorithm. This bound requires an assumption on the distance of mixture models. Recent
work on EM theory has shown global bounds on the absolute risk of parameters given good initial
guesses and the maximization function in the Baum-Welch algorithm is contractive [1].
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