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1 Introduction

In this project, we investigate the cost of fairness constraints on ranking utility for online recom-
menders. Online recommenders use ranking systems to present relevant results to a user where an
item’s position in the ranking primarily determines its level of exposure. AirBnB, LinkedIn, and
Uber all use rankings in their systems to display relevant items to their users [Biega et al., 2018].
In some cases, a ranking system may be perceived as biased in its treatment of items to be ranked.
For example, news aggregators could bias toward a news authority, leading to filter bubbles. One
way to address filter bubbles, for example, is to distribute exposure more evenly among articles.
Generalized second price auctions, where advertisers bid for the placements of advertisements, is a
multibillion-dollar industry purchasing the exposure of content in ranked search results [Edelman
et al., 2007], motivating the need for fair exposure across advertisers in rankings. Furthermore,
recent literature has put a spotlight on unfair rankings.

Recent studies have shown bias in ranking results. Kay et al. [2015] found that image search
results reflected stereotypes and showed systematic under representation of women for image search
results. In another example, positions in rankings have been shown to affect click through rate,
which perpetuates the problem of exposure by reinforcing the rankings Craswell et al. [2008].
Ranking positions in search results and last clicked position are shown to effectively predict which
links a user will click next [Dupret and Piwowarski, 2008]. Furthermore, multiple clicks on a page
can effectively predict a user’s next clicks [Guo et al., 2009]. These results show the need to apply
fairness to the exposure or attention given documents in search results. Granka [2010] champions
the idea of diversity in online search as a way to increase exposure on a per-query level. They
describe two factors of diversity on this level: site ownership and information content. Diversity
in site ownership captures the comparisons of online and offline media ownership, and diversity in
information content provides stronger indicators of the utility and information value provided by
different sources. One way to address position bias is to impose fairness constraints on ranking
systems.

We use Singh and Joachims [2018]’s computational framework to compute utility-maximizing
ranking while imposing fairness constraints. Both gradient methods and convex optimization cov-
ered in class could be applied to this problem. However, as convex optimization guarantees a
global solution for convex problems, we use this technique to solve a linear program with fairness
constraints. We focus on group notions of fairness and study how demographic parity, disparate
treatment, and disparate impact influence ranking utility. Each aims to allocate exposure among
items across all groups fairly. For each, we ask: how much loss in utility is incurred by utilizing
fairness constraints?

We also explore the loss of utility when relaxing the fairness constraints under the α-discriminatory
approximation to fairness. We apply a variant of the α-discriminatory approximation of fairness
proposed by Woodworth et al. [2017]. The α-discrimination approximation relaxes the strict equal-
ity between performance metrics between groups and instead requires that the difference be less
than a constant α. Our notion of relaxed constraints is motivated by the desire to balance utility
with fairness. Relaxed constraints can be use to apply corrective fairness toward one group due
to historical discrimination. For example, a company might have had historically biased hiring
practices and desire to highlight a discriminated group, maintain fairness, and optimize utility. We
explore the impact of fairness constraints on two real-world datasets: the Yow news recommenda-
tion dataset and the MovieLens 1M Dataset [Zhang, 2005, Harper and Konstan, 2015].

Our contribution is the addition of approximate fairness constraints to rankings. We develop
a general method to apply approximations of fairness constraints with the framework proposed by
Singh and Joachims [2018]. We follow by empirically quantifying the price of fairness under exact
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and approximate constraints.

2 Related works

2.1 Fairness in Ranking Systems

With the growing attention of fairness in machine learning algorithms, several attempts exist to
address fairness in ranking systems. Singh and Joachims [2018] introduced a framework to add
fairness constraints to rankings by first formulating rankings per document as probabilities and
demonstrating several common notions of fairness, such as demographic parity. Biega et al. [2018]
formulated an individual notion of fairness in parallel with Singh and Joachims [2018], framing
the problem with a specific focus on the attention received to individuals over multiple queries,
accounting for the amortized equity of attention received.

Others have focused on solving the top-k fair ranking problem to determine a subset of k items
from an extensive list of n >> k items that maximize utility and are subject to group fairness
constraints. Zehlike et al. [2017] proposes a post-processing method to correct for systematic bias
and apply a statistical test on the proportion of the protected group on every prefix of the ranking.
Celis et al. [2017] construct a constrained ranking optimization problem by bounding the number
of items of a particular type, based on a sensitive attribute that appears in the top k positions of
the ranking. The bounded mechanism ensures that no item of a specific type dominates the top
rankings.

2.2 Approximations of Fairness Constraints

From the best of our knowledge, there do not exist examples of relaxations in fair rankings. There
are approximations to fair reinforcement learning and clustering that result in relaxed outcomes as
well as relaxations of fairness in clustering.

Approximating fairness has largely been motivated by improving computational time incurred
by adding fairness constraints. In reinforcement learning, Jabbari et al. [2017] apply two relaxations
to Joseph et al. [2016]’s fairness definition, which states that an action’s quality is its potential long-
term discounted reward. The first relaxation is approximate-choice fairness, which requires that
an algorithm never selects a worse action with probability much higher than better actions, and
the second relaxation is approximate-action fairness, where an algorithm never favors an action
with a drastically lower quality compared to better actions. Jabbari et al. [2017] find that under
approximate-choice fairness a learning algorithm runs in polynomial time instead of exponential
time for the exact fairness constraint.

There have been several approximation results in fair clustering of data. In the fairlet paper,
Chierichetti et al. [2017] introduced a (k + 1 +

√
3 + ε)-approximation algorithm for k-means to

obtain perfectly balanced clusters in order quadratic time. They showed how to extend this to
produce relaxed fair clusterings. However, due to quadratic time complexity, their algorithm is
prohibitive for high-dimensional large-scale datasets. Bercea et al. [2018] improve these results
by obtaining a constant 5-approximation algorithm to the fairlet problem. In order to improve
the time complexity requirements, Backurs et al. [2019] use a notion of red-blue clustering that
is (r, b) − fair if the cluster achieves a balance(S) >= r

b , where balance is a measure of the bias
between groups. On the surface, balance appears similar to the relaxation of disparate impact that
we apply, but they use hierarchically well-separated trees to generate clusters, which is specific to
geometric interpretations of fairness. They were also able to show that given an α-approximation
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algorithm to fair clustering, they can achieve a near-linear algorithm with minimal cost to the
approximation.

3 Ranking utility under fairness constraints

3.1 Ranking utility and probabilistic rankings

Most utility measures for ranking evaluation are derived from the relevance of the individual items
to be ranked. The aim is to maximize the utility of a ranking r of a set of documents D =
{d1, d2, d3, . . . , dN} for a query q while guaranteeing that r is fair. A general way to express utility
measures for information retrieval is

U(r|q) =
∑
u∈U

P (u|q)
∑
d∈D

v(rank(d|r))λ(rel(d|u, q)), (1)

where rel(d|u, q) denotes the binary relevance of the document d to a user u, v(rank(d|r)) indicates
how much attention document d gets at rank rank(d|r), and λ maps the relevance of the document
for a user to its utility. The relevance of a document could also represent a Likert scale as seen in
movie ratings or a real-valued score. The position bias, denoted as v, is the fraction of users who
examine the document shown at a specific position out of the total number of users who issue the
query q [Singh and Joachims, 2018]. Since rankings are combinatorial objects, naively searching the
space of all ranking would take time that is exponential in |D|. Therefore, we consider probabilistic
rankings. A probabilistic ranking R can be used instead of a single deterministic ranking r:

U(R|q) =
∑
r

R(r)
∑
d∈D

v(rank(d|r))u(d|q) (2)

Here,

u(d|q) =
∑
u∈U

λ(rel(d|u, q))P (u|q) (3)

is the expected utility of a document d for query q. Let Pij be the probability that R places
document di at rank j. Matrix P forms a doubly stochastic matrix of size N ×N . The sum of each
row (probabilities for each document) and column (probabilities for each position) is 1. The utility
of the ranking can be written as the matrix product U(P|q) = uTPv, where u and v are column
vectors of size N with ui = u(di|q) and vj = v(j).

3.2 Fair ranking optimization

Using Singh and Joachims [2018]’s model for optimizing fair rankings via linear programming, our
problem is to find a doubly stochastic matrix P that maximizes the expected utility subject to a
fairness constraint. More formally,

P = argmax
P

uTPv (4)

s.t. 1
TP = 1

T ∧ P1 = 1 ∧ 0 ≤ Pi,j ≤ 1 ∧ P is fair. (5)

The fairness constraint can be expressed in the linear form of

fTPg = h. (6)
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The vectors f , g, and scalar h can be chosen for a range of different fairness conditions. The vector
f might encode group identity and the relevance of each document, and g can reflect the importance
of each position.

In this paper, we will be concerned with the cost of fairness. Specifically, cost of fairness can
be defined as the loss of expected utility, or

CoF = uT (P∗ −P)v. (7)

Fairness is inversely related to utility. In the extreme case, having all of the utility held by one
group and the second group’s size going to infinity, the fairness constraint would reduce the expected
utility toward zero. We hypothesize, however, that in real datasets the effect of fairness will be less
insidious on expected utility, as most datasets are not imbalanced in this manner. We explore the
consequences in the experimental results.

3.3 Group fairness constraints

To implement the constraint P is fair in the linear program above, Singh and Joachims [2018]
formulate three fairness constraints assuming binary valued sensitive attributes (G0 and G1): de-
mographic parity, disparate treatment, and disparate impact. They define exposure for a document
di under a probabilistic ranking P as

Exposure(di|P) =

N∑
j=1

Pi,jvj . (8)

Here, vj represents the importance of position j, which is the fraction of users that examine the
item at this position. The average exposure of documents for a group is

Exposure(Gk|P) =
1

|Gk|
∑

di∈Gk

Exposure(di|P). (9)

This leads to the definition of demographic parity as equality in average exposure between groups:

Exposure(G0|P) = Exposure(G1|P) (10)

⇔ Exposure(G0|P)− Exposure(G1|P) = 0. (11)

Singh and Joachims [2018] show that this constraint is equivalent to fTPv = 0 with fi =
(
1di
∈G0

|G0| −
1di
∈G1

|G1|

)
.

In some instances, it is appropriate for relevance to be proportional to exposure, which motivates
the use of disparate treatment or disparate impact as a fairness constraint. Sometimes, small
differences in relevance might lead to significant differences in exposure. Instead, we consider the
average utility of a group defined as

U(Gk|q) =
1

|Gk|
∑

di∈Gk

ui. (12)

Disparate treatment constraint requires the exposure of the two groups to be proportional to their
average utility:

Exposure(G0|P )

U(G0|q)
=

Exposure(G1|P )

U(G1|q)
, (13)
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which is equivalent to fTPv = 0 with fi =
(

1di
∈G0

|G0|U(G0|q) −
1di
∈G1

|G1|U(G1|q)

)
[Singh and Joachims, 2018].

In other scenarios, it may be appropriate to set a constraint on the impact, such as expected click
though rate, which more directly reflects the economic impact of the ranking. Richardson et al.
[2007] defines the probability of a document di being clicked as:

P (click on document i) = P (examining i)× P (i is relevant) (14)

= Exposure(di|P)× P (i is relevant) (15)

=

 N∑
j=1

Pijvj

× ui (16)

This probability is generalized as the average click through rate of documents in group Gk:

CTR(Gk|P) =
1

|Gk|
∑
i∈Gk

N∑
j=1

Pi,jujvj . (17)

Singh and Joachims [2018] define the disparate impact constraint as enforcing the expected click
through rate of each group to be proportional to its average utility:

CTR(G0|P)

U(G0|q)
=

CTR(G1|P)

U(G1|q)
, (18)

which is equivalent to fTPv = 0 with fi =
(

1di
∈G0

|G0|U(G0|q) −
1di
∈G1

|G1|U(G1|q)

)
ui.

3.4 α-discriminatory relaxations on fairness constraints

In our project, we relax fairness constraints by applying a variant of the α-discriminatory approx-
imation of predictor fairness proposed by Woodworth et al. [2017]. The α-discrimination approxi-
mation relaxes the strict equality between performance rates between groups and instead requires
that the difference be less than a constant α. By using a approximation, we can limit the loss
of utility while balancing fairness. To define the α-discriminatory fairness constraints, we will use
the demographic parity ratio (DPR), disparate treatment ratio (DTR), and disparate impact ratio
(DIR). Each ratio measures how much their respective fairness constraints are violated.

DPR(G0, G1|P, q) =
Exposure(G0|P)

Exposure(G1|P)
(19)

DTR(G0, G1|P, q) =
Exposure(G0|P)/U(G0|q)
Exposure(G1|P)/U(G1|q)

, (20)

DIR(G0, G1|P, q) =
CTR(G0|P)/U(G0|q)
CTR(G1|P)/U(G1|q)

(21)

Notice that the ratio is 1 when the groups are fairly treated, otherwise the ratio indicates which
group receives preferential treatment. Intuitively, the exposure or average clickthrough rate from
one group to another should not be greater than some margin from another group. While we could
add a constant to the original fairness constraint, this lacks interpretability and generalizability.
Instead, we adopt the notion used in the real-world usage of DIR to identify disparate impact
between one group and another by the 80% rule [Feldman et al., 2015]. In this case, we could set
α = 0.80. We derive the α-discriminatory approximations for all fairness constraints below.
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3.4.1 Demographic parity α-discriminatory approximation

We can require that:

Exposure(G0|P)

Exposure(G1|P)
≥ α (22)

⇔ Exposure(G0|P) ≥ α · Exposure(G1|P) (23)

⇔ Exposure(G0|P) − α · Exposure(G1|P) ≥ 0, (24)

and rewrite this inequality as:

1

|G0|
∑

di∈G0

N∑
j=1

Pijvj − α ·
1

|G1|
∑

di∈G1

N∑
j=1

Pijvj ≥ 0 (25)

⇒
∑
di∈D

N∑
j=1

(
1di ∈ G0

|G0|
− α · 1di ∈ G1

|G1|

)
Pijvj ≥ 0 (26)

⇒ f1
TPv ≥ 0 (27)

where f1i =
(
1di
∈G0

|G0| − α ·
1di
∈G1

|G1|

)
. Additionally, we can require

Exposure(G1|P)− α · Exposure(G0|P) ≥ 0, (28)

which yields an additional constraint

f0
TPv ≥ 0 (29)

where f0i =
(
1di
∈G1

|G1| − α ·
1di
∈G0

|G0|

)
.

We define (29) and (27) as demographic parity α-discriminatory constraints. These constraints
give interpretability to the results: no group should receive less than α% of the exposure of any
other group.

3.4.2 Disparate treatment α-discriminatory approximation

We define measures for the disparate treatment α-discriminatory approximation as:

Exposure(G0|P)/U(G0|q)− α · Exposure(G1|P)/U(G1|q) ≥ 0 (30)

Exposure(G1|P)/U(G1|q)− α · Exposure(G0|P)/U(G0|q) ≥ 0. (31)

The two inequalities produce two constraints, namely

f1
TPv ≥ 0 with f1i =

(
1di ∈ G0

|G0|U(G0|q)
− α · 1di ∈ G1

|G1|U(G1|q)

)
and (32)

f0
TPv ≥ 0 with f0i =

(
1di ∈ G1

|G1|U(G1|q)
− α · 1di ∈ G0

|G0|U(G0|q)

)
. (33)
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Distribution of RSS1 feed ratings Distribution of RSS2 feed ratings

Figure 1: Distribution of ratings for news articles.

3.4.3 Disparate impact α-discriminatory approximation

We define measures for the disparate impact α-discriminatory approximation as:

CTR(G0|P)/U(G0|q)− α · CTR(G1|P)/U(G1|q) ≥ 0 (34)

CTR(G1|P)/U(G1|q)− α · CTR(G0|P)/U(G0|q) ≥ 0. (35)

The two inequalities produce two constraints, namely

f1
TPv ≥ 0 with f1i =

(
1di ∈ G0

|G0|U(G0|q)
− α · 1di ∈ G1

|G1|U(G1|q)

)
ui and (36)

f0
TPv ≥ 0 with f0i =

(
1di ∈ G1

|G1|U(G1|q)
− α · 1di ∈ G0

|G0|U(G0|q)

)
ui. (37)

Note that α need not be equivalent for both classes. ie. we could define αi as the permitted
discrimination toward group i. For example, a user may desire to see more relevant articles from
one news source or another, but still maintaining a balance from both results.

4 Datasets

We explore the impact of fairness constaints on two real-world datasets: the Yow news recommen-
dation dataset and the MovieLens 1M Dataset.

4.1 News recommendation dataset

Singh and Joachims [2018] use the Yow news recommendation dataset [Zhang, 2005] in their ex-
perimental results. The dataset includes users, news authorities, and relevance of RSS feeds to
the user. We replicate Singh and Joachims [2018]’s study by randomly sampling a subset of news
articles in the “people” topic from the top two sources based on the RSS feed identifier. We use the
“relevant” field as measure of relevance. Relevance is given as a rating from 1 to 5, so we normalize
by dividing by 5 and resolve ties by adding Gaussian noise with ε = 0.05. In total, there are 37
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Drama ratings Action ratings

Figure 2: User distribution of ratings for movies divided by genre.

articles rated from the top two new sources. Figure (1) gives the distribution of ratings for the top
two news sources. The mean of the ratings for RSS1 is 3 and the variance is 0.6667. The mean of
the rating for RSS2 is 3.0769 and the variance is 0.5325. The ratings are slightly biased towards
RSS2. New articles from RSS1 might rank slightly lower in the unfair ranking. We do not expect
the utility of the fair rankings to be significantly lower than the unfair ranking. Given that the two
datasets exhibit a similar distribution of ratings, a limitation of this dataset is that fair and unfair
rankings are unlikely to be substantially different.

4.2 Movie ratings dataset

The MovieLens 1M Dataset [Harper and Konstan, 2015] is a recommendation dataset from the
University of Minnesota that includes over 1 million users ratings for movies. We use the ratings
(from 1 to 5) as the relevance feature. We included the ratings of the user with the highest number
of submitted ratings. We selected the genre with the highest number of submitted ratings, dramas,
as well as the genre with the largest number of submitted ratings with a significantly different
distribution, action films. The user has 2314 ratings, drama has 929 ratings and action has 261
ratings. Figure (2) gives the distribution of ratings for the selected genres. The ratings are biased
in favor of dramas with a mean of 3.784 and variance 0.979 and biased against action films with
a mean 3.157 and variance 0.868. Action films will likely rank lower in the unfair ranking, since
the relevance is lower. As such, we expect that the utility of a fair ranking to be significantly
lower than the unfair ranking. A problem arises in this dataset as genres exist that include both
“action” and “drama” leading to ambiguity in resolving group membership. Given that these could
theoretically improve the rankings of one genre or another and vastly change the unfair rankings,
we chose to remove ambiguous results from the dataset. It would be a worthy followup to explore
how to handle ambiguous group membership.

5 Experimental results

5.1 Cost of Fairness

As mentioned in Section 3.2, fairness constraints typically inversely affect expected utility, measured
as cost of fairness (CoF). It is expected that real-world datasets will typically exhibit low CoF,
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Figure 3: Measuring the cost of fairness and average utility of each fairness constraint with the
Yow dataset

Figure 4: Measuring the cost of fairness and average utility of each fairness constraint with the
MovieLens 1M dataset between drama and action.
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since they do not reflect worst-case conditions. We measured this against the Yow dataset, as
demonstrated in Figure (3). For all strict fairness constraints (α = 1), there is a marginal cost
of fairness, which matches the expected behavior. When α < 0.9 the fairness constraints have no
impact on the CoF, within some margin of error. However, beginning with disparate impact, each
relaxed fairness constraint increases in CoF when α > 0.9.

Generally, the effect of fairness on utility is low, matching the hypothesis in Section 3.2. Items
are largely distributed evenly, so rankings are unlikely to change drastically and increase CoF. For
example, in the 1M dataset, the distributions of both datasets roughly matches a normal curve,
so the worst-case divide of high-utility in one group and a large low-utility second group is not
reflected in the data, leading to a reduced impact on utility.

After the initial results giving low difference in utility with fair constraints on the 1M dataset,
we posited that fair constraints lead to lower changes in utility for large, well-distributed datasets,
but would be more impacting toward smaller datasets. There are two reasons for this. Firstly, we
compute a probability distribution over a larger number of rankings, which reduces the magnitude
of changes in expected utility. Secondly, the relevance in these datasets are discrete over 1 through
5, which causes most changes of relevance to be within the same relevance class and leading to
reduced changes in utility. If an item from one group is 3 relevance and another group is also 3
relevance, then there is no change in utility if they swap positions, but their exposure is fairer.
This leads to cost of fairness to be negligible for large datasets with few classes of relevance. We
expect smaller datasets will lead to more discrete relevance class changes and a higher utility cost
to fairness-based changes. We formulated a second experiment where we sampled uniformly at
random 20 data points each from the drama and action ratings to roughly match the distribution
of the original dataset. Action included several 3’s and a single 5, whereas drama included several
5’s, so the likelihood of lower relevance exchanging rank with a more relevant item given a fair
constraint is high, which should increase the impact on cost of fairness. The results in Figure (5)
matches the hypothesis, with all fairness constraints exhibiting cost of fairness.

We see in Figure (3, 4, 5) that after a threshold, all fairness constraints initially follow a curve
and after another threshold become linearly increasing in the cost of fairness. This result suggests
that it may be possible to estimate the line of the cost of fairness by using at least three points:
the unrelaxed fair constraint, a relaxed fair constraint, and the unfair optimization utility. Given
these, we could determine an optimal balance between the cost of fairness and the unfair constraint
in utility. That is, estimating the cost of relaxed fairness is a constant order more time complexity
than obtaining the initial unrelaxed fair constraint.

The linear program works over a large solution space. Even with a few thousand data points
for a single user can be impractical to compute in real time, whereas companies have datasets that
include millions of points per user. Biega et al. [2018] found similar challenges in their implemen-
tation of amortized fairness and suggested LP relaxations or greedy solutions. A clearer path to
optimization of the approximate fairness as proposed here, aside from the aforementioned possible
linear estimation, would be to use a parametric linear program solver, such as proposed by Yu
and Monniaux [2019]. Parametric linear program solvers attempt to find the optimal value for an
uncertain constraint, such as α above. This would reduce the problem from a search space over
possible values of alpha to solving a single parametric linear program.

6 Conclusion

In this project we applied approximate fairness constraints to Singh and Joachims [2018]’s frame-
work for fair ranking problems through the lens of exposure rates between groups. We measured
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Figure 5: Measuring the cost of fairness and average utility of each fairness constraint with the
MovieLens 1M dataset between drama and action using 20 review from each.

and compared the cost of exact and approximate fairness constraints on ranking utility. We discov-
ered that fairness constraints marginally affect ranking utility. Empirically, we find that estimating
the cost of relaxed fairness is a constant order more time complexity than the unrelaxed fairness
constraint. Some possible future directions for our work are:

• Using an approximation algorithm to offset the time complexity of large-scale rankings (ie.
using parametric linear programming to test many alphas).

• Investigating the possibility of a linear estimator for the approximate fairness.

• Apply the techniques used here to datasets that include items over a continuous relevance to
determine the impact of discrete vs continuous relevance over CoF.

• Determine the impact of alpha-approximation on multigroup fairness (ie. perfect equality
requires constraints linear in the number of groups, but alpha-approximation requires more).

• Generalized results on worst-case or average-case analysis on the impact of alpha-approximation.
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